
        Corresponding Author: m.bagherian00@gmail.com 

        https://doi.org/10.48313/scodm.v2i3.41      

Licensee System Analytics. This article is an open access article distributed under the terms and conditions of the Creative 

Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0). 

 

 
 

 

 

 

 

 

1|Introduction    

Supply Chain Management (SCM) involves the coordination and management of the flows of goods, 

information, and finances across interconnected and diverse entities, from suppliers to consumers, to deliver 

products efficiently and effectively. Inventory management, as a vital component of SCM, focuses on 

monitoring and controlling ordering, storage, and utilization of components and finished products. In today's 
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Abstract 

Behpakhsh Company, as one of the largest distribution and logistics companies in the country, plays a significant role 

in Supply Chain Management (SCM). SCM involves coordinating and integrating material, information, and financial 

flows across units to ensure the efficient and effective procurement and distribution of goods. In today's Volatile, 

Uncertain, Complex, and Ambiguous (VUCA) environment, effective inventory management is essential for the 

operational success of distribution companies. This paper examines the innovative approach adopted by Behpakhsh 

Company to leverage InvAgent technology, an artificial intelligence–based language model that uses zero-shot 

learning to enhance inventory management and reduce costs. By analyzing data and making intelligent decisions 

under changing conditions, InvAgent improves transparency and adaptability across Behpakhsh's supply chain. The 

implementation of this model has not only increased efficiency and productivity in Behpakhsh's distribution 

operations but also helped mitigate the risks of inventory shortages and excessive stockpiling. Ultimately, this study 

demonstrates that Behpakhsh, through advanced technologies and Large Language Models (LLMs), has achieved 

improved supply chain performance and enhanced customer satisfaction.  
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  Volatile, Uncertain, Complex, and Ambiguous (VUCA) world, effective inventory management is essential 

for aligning supply and demand, minimizing costs, and enhancing supply chain resilience. It enables firms to 

remain confident in their ability to adapt to disruptions (Quan et al. [1]), optimize resources (Abaku et al. [2]), 

and sustain uninterrupted operations (Yasmin [3]) in a highly interconnected, dynamic market environment. 

Previous studies on inventory management have explored various applications of heuristic approaches, such 

as the Beer Distribution Game [4–6]. In addition, numerous applications of reinforcement learning–based 

models have been investigated, including decentralized inventory management (Mousa et al. [7]) and adaptive 

supply chain synchronization (Kegenbekov and Jackson [8]). However, these approaches often require 

complex model design and extensive training resources and generally lack explainability. Despite these 

advances, the application of Large Language Models (LLMs) to address multi-agent Inventory Management 

Problems (IMP) in the supply chain of Behpakhsh Company has not yet been comprehensively investigated. 

In this study, InvAgent is introduced as an innovative LLM-based zero-shot multi-agent inventory 

management system. By leveraging the advanced capabilities of LLMs, this system enhances the operational 

resilience of Behpakhsh's supply chain and strengthens collaboration among its network components. 

The InvAgent approach utilizes the reasoning and decision-making capabilities of LLMs to achieve better 

coordination, optimize inventory management processes, and enhance transparency and adaptability within 

Behpakhsh's supply chain. The proposed framework of this paper, illustrated in Fig. 1, comprehensively 

explains the operational mechanism of InvAgent and its impact on improving the efficiency of Behpakhsh's 

supply chain network. 

 

Fig. 1. Illustrates the InvAgent framework. 

Fig. 1 illustrates the InvAgent framework, a Zero-Shot LLM-based multi-agent inventory management system. 

First, the user proxy resets the environment at the beginning of the first episode. In the second step, the user 

proxy requests the current episode state for each stage from the environment. Then, the user proxy provides 

the current state to each stage and requests an action from it. Finally, all agents take actions simultaneously 

and transition to the next state. 

Our contributions in this paper, with a focus on Behpakhsh Company, are summarized as follows: 

Utilizing large language models for multi-agent inventory management 

In this study, the Zero-Shot learning capabilities of LLMs are employed to manage the multi-agent inventory 

management systems of Behpakhsh Company. This capability enables adaptive and informed decision-

making without the need for prior training or explicitly provided examples, thereby enhancing system 

flexibility. 

Model explainability and transparency 

The proposed model offers a high level of explainability, further enhanced by Chain-of-Thought (CoT) 

reasoning. This feature facilitates a clearer understanding of the model's behavior and increases trust in its 

outcomes, making it a more reliable system compared to traditional heuristic and reinforcement learning 

approaches. 
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  Dynamic adaptation to variable demand 

Our model dynamically adapts to different demand scenarios, thereby minimizing costs and preventing 

inventory shortages. Through extensive evaluation across diverse scenarios, this capability demonstrates 

improved efficiency in Behpakhsh Company's SCM and optimizes inventory management processes. 

These contributions enable Behpakhsh Company to enhance its supply chain productivity by leveraging 

advanced technologies and to deliver more reliable and transparent operational performance. 

2|Methodology 

This section describes the methodological framework for designing and implementing the InvAgent model. 

This methodology involves defining a multi-layer, multi-period production–inventory system to model and 

simulate the supply chain processes of the Behpakhsh Company. Subsequently, the proposed InvAgent model 

is introduced as an LLM-based multi-agent inventory management system, which is designed to optimize 

supply chain operations 

2.1|Problem Definition 

A multi-layer, multi-period production–inventory system is designed to model and simulate a typical multi-

stage supply chain for the production and distribution of non-perishable goods. As illustrated in Fig. 2, each 

stage of the supply chain consists of an inventory storage area (for storing essential materials required for 

production) and a production facility (for converting raw materials into products). 

System characteristics: 

I. The output materials of stage i are used as the input materials for stage i–1. 

II. The stages are indexed in descending order, from stage M–1 (the upstream beginning of the supply chain) 

to stage 0, which represents the retail level. 

III. Production at each stage is constrained by both the production capacity and the available inventory at that 

stage. 

IV. The flow of raw materials starts from upstream stages and eventually reaches the retail stage to satisfy 

customer demand. 

Time periods (T): the supply chain is divided into discrete time periods t. Each simulation starts at t = 0 with 

initial conditions, and during each time period T, the following events occur: 

Shipment review: each stage receives its inbound shipments that arrive after completing the corresponding 

transportation lead times. 

Order and demand review: each stage places replenishment orders to its corresponding suppliers. Orders are 

placed based on available production capacity and suppliers' inventory levels. Customer demand at the retail 

stage is fulfilled based on available inventory. 

Order and demand fulfillment: each stage delivers products up to its maximum feasible capacity to satisfy 

incoming demands or replenishment orders. Orders and demands that cannot be fulfilled within the current 

time period are prioritized in the subsequent period. 

Profit calculation: each stage calculates the costs and profits associated with the following activities: product 

sales, raw material ordering, penalties for delayed fulfillment, and Holding costs for excess inventory. 
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  This multi-layer, multi-period production–inventory system provides the foundational structure for analyzing 

and simulating the supply chain processes of the Behpakhsh Company. It accurately models transportation, 

production, and inventory management processes. The proposed InvAgent leverages this structure to 

enhance supply chain performance and reduce operational costs. 

 

Fig. 2. Flowchart of inventory management of a multi-tier supply chain. 

In Fig. 2, Raw materials flow through each stage, which includes inventory storage and production facilities. 

The upstream plant at stage i supplies intermediate products to stage i-1 below, where they are stored as 

inventory. Stage 0 (retail) supplies finished products to meet customer demand. Considering the items 

mentioned in Table 1, the overall inventory management problem (IMP), which is taken from Hubbs et al. 

[9], can be described using the following equations: 

In Eq (1), the current inventory at stage m at the end of the current time period t is equal to the ending 

inventory of the previous period, plus the fulfilled order from period t − Lm, minus the sales during the 

current period. In Eq (2.a), the fulfilled orders at stage m placed during time period t are determined by the 

minimum of the following three components: 1) the previous backlog at the downstream stage plus the newly 

requested orders, 2) the production capacity of the upstream stage, and 3) the total available inventory at the 

upstream stage m + 1 at the beginning of time period t, which includes the remaining inventory from the 

previous period and newly arrived orders after accounting for the transportation lead time. The final fulfilled 

order is the minimum of these three values, ensuring the order does not exceed any of them. It ensures the 

supply chain operates within inventory and capacity limits, preventing overcommitment and inventory 

shortages. Eq (2.b) indicates that requested orders at the highest stage are always fulfilled, since an unlimited 

supply of raw materials is assumed at this stage. As shown in Eq (3.a), sales are always equal to the fulfilled 

orders, except at stage 0 (the retailer). In Eq. (3.b), sales at stage 0 (the retailer) during time period t are 

determined by the minimum of the following three components: 1) the previous backlog at stage 0 plus the 

current customer demand, 2) the production capacity at stage 0, and 3) the total available inventory at stage 0 

at the beginning of time period t, which consists of the remaining inventory from the previous period and 

newly fulfilled orders after accounting for transportation lead time. It ensures that retail sales do not exceed 

Im,t = Im,t−1 + Rm,t−Lm
− Sm,t, for all m ∈ M, (1) 

Rm,t = min(Bm+1,t−1 + Om,t,Cm+1, Im+t,t−1 + Rm+1,t−Lm+1
) , for all m = 0, … , M − 2, (2a) 

RM−1,t = OM−1,t, (2b) 

Sm,t = Rm−1,t, for all m = 1, … , M − 1, (3a) 

S0,t = min(B0,t−1 + Dt,C0
, I0,t−1 + R0,t−L0

), (3b) 

Bm,t = BM,t−1 + Om−1,t − Sm,t, for all m = 1, … , M − 1, (4a) 

B0,t = B0,t−1 + Dt − S0,t, (4b) 

Pm,t = pmSm,t − rmRm,t − kmBm,t − hmIm,t, for all m ∈ M. (5) 
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  total demand, production capacity, or available inventory. In Eq. (4.a), the backlog at stage m during time 

period t, for all stages except the retailer, is calculated as the sum of the previous backlog at that stage and the 

orders requested from the downstream stage, minus the sales at stage m. In Eq. (4.b), the backlog at stage 0 

(the retailer) during time period t is calculated similarly to Eq. (4.a); however, the requested order is replaced 

by customer demand, since the retailer interacts directly with customers. Finally, in Eq. (5), the profit at each 

stage m during time period t is calculated as sales revenue minus procurement costs, unmet demand penalty 

costs, and inventory holding costs. 

Table 1. Parameter symbols and definitions. 

 

 

 

 

 

 

 

 

 

 

 

 

2.2|InvAgent 

In this project, we introduce InvAgent, a LLM–based multi-agent inventory management system designed 

for supply chain optimization. InvAgent consists of several key agents, including a user proxy and one agent 

for each stage of the supply chain. The user proxy acts as an intermediary between the environment and all 

supply chain agents, facilitating communication and data exchange management. 

The methodological framework of InvAgent is illustrated in Fig. 1 and proceeds through the following steps: 

I. The user proxy resets the environment at the beginning of the first episode. 

II. The user proxy requests the current episode state for each stage from the environment. 

III. The user proxy provides the state of each stage to the corresponding agent and requests an action from it. 

IV. The user proxy sends the agents' actions to the environment and receives the next state and the reward for 

that step. 

V. The user proxy determines whether the simulation has terminated; if not, the simulation returns to Step 2. 

At the beginning of the simulation, we generate system messages for the agents (as shown in Fig. 3) that 

provide essential information, such as definitions, roles, and objectives, within the supply chain. The agent 

state Sm,tS_{m,t}Sm,t and action am,ta_{m,t}am,t are defined as follows: 

and 

Symbol Definitation 

m Stages m ∈ M = {0,1,2, … , M − 1} 
t t ∈ T = {0,1,2, … , T} 

Im,t Inventory at the end of time period t 

Iመm,t Intended inventory at the end of time period t 

Om,t Requested orders placed in the time period t 

Rm,t Orders filled in the time period t 

Dt Customer demand during the time period t 

Sm,t Sales during the time period t 

Bm,t Backlog at the end of time period t 

Lm Transition time between stages m+1 and m 
Lmax Maximum transition time in the system 

Pm,t Profit at stage m in time period t 

cm Production capacity at stage m 

pm Sales price 
rm Order cost (procurement) 

km Penalty for unfilled orders 

hm Inventory holding cost 

sm,t =

[cm, pm, rm, km, hm, Lm, Im,t−1, Bm,t−1, Bm+1,t−1, Sm,t−Lmax
, … , Sm,t−1, 0, … ,0, Rm,t−Lm

, … , Rm,t−1],  
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The state comprises the current stage, inventory level, backlog, upstream backlog, recent sales, and received 

deliveries, with zero remaining layers. As illustrated in Fig. 4, the prompt is designed to collect state 

information and action requests from each agent to ensure effective decision-making and transparent 

communication across the supply chain. It includes contextual information such as the current time step, the 

stage, and the stage index, which indicate the model's position within the supply chain. The state description 

(Fig. 5) provides a comprehensive snapshot of inventory levels, backlogs, past sales, and incoming deliveries, 

thereby enabling informed decision-making. Demand details (Fig. 6) and downstream orders (Fig. 7) help link 

supply decisions to immediate needs, allowing upstream suppliers to respond rapidly to downstream orders 

or demand signals. The strategy description (Fig. 8) highlights guidelines such as accounting for lead times 

and avoiding over-ordering to maintain inventory balance. By requiring justification before action selection, 

the prompt promotes transparency and interpretability in the decision-making process. 

 

Fig. 3. System messages that provide critical information, such as definitions, roles, 

and objectives in the supply chain. 

 

 

Fig. 4. Prompt for inventory management simulation in LLMs (see Figs. 5–8). 

 

am,t = Om,t,  

System Message: 

Retailer: You play a vital role as Stage 1 (Retailer) in a four-stage supply 

chain. Your objective is to minimize the total cost by effectively managing 

inventory and orders. 

Wholesaler: You play a vital role as Stage 2 (Wholesaler) in a four-stage 

supply chain. Your objective is to minimize the total cost by effectively 

managing inventory and orders. 

 

Prompt: 

You are currently at period {time period}, and you are at stage {stage} out of 
{number of stages} in the supply chain. Given the current situation: 

{State description} 

{Demand description} {Downstream order description} 

What is your action (order quantity) for this period? 

{Strategy description} 

Please first explain your reasoning in 1–2 sentences, and then state your action as a 
non-negative number enclosed in brackets (e.g., [0]) 
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Fig. 5. Upon receiving deliveries, we select the next Lm interval. 

 

Fig. 6. Demand description for the different demand scenarios included in the order. 

 

Fig. 7. Downward ordering from the previous to the current stage in a cycle that can 

transfer downstream information faster. 

 

Fig. 8. Strategy description introducing the golden rule and decision-making 

guidance for the LLM. 

 

Status Description: 

- Lead time: {Lead time} cycles 

- Inventory level: {Inventory} units 

- Current backlog (you owe the downstream stage): {Backlog} units 

- Upstream backlog (the upstream stage owes you): {Upstream backlog} units 

- Previous sales (in recent cycles, from oldest to newest): {Sales} 

- Incoming deliveries (in this cycle and upcoming cycle(s), from nearest to farthest): {Deliveries} 

-  

Strategy Description:  

The golden rule of the game: Open orders should always be equal 

to “Expected down Orders + Backlogs”. If open orders are larger 

than this, inventory will increase (as soon as open orders arrive). If 

open orders are smaller than this, the backlog will not decrease and 

may even increase. Please plan in advance when and where to 

transfer your order. Remember that your upstream stage has its own 

transfer time, so don’t wait until the inventory runs out. Also, avoid 

ordering multiple units at once. Try to spread your order over 

multiple rounds to avoid the bullwhip effect. Anticipate future order 

changes and adjust your orders accordingly to maintain a stable 

inventory level. 

Bottom Order Description: 

 Your bottom order from stage {stage-1} for this round is 

{[stage-1] actions}. 

Demand Description: 

• Constant Demand: The expected demand at the retail stage (Stage 1) is a fixed demand of 
4 units for all 12 periods. 

• Variable Demand: The expected demand at the retail stage (Stage 1) follows a discrete 
uniform distribution U {0, 4} for all 12 periods. 

• Higher Demand: The expected demand at the retail stage (Stage 1) follows a discrete 
uniform distribution U {0, 8} for all 12 periods. 

• Seasonal Demand: The expected demand at the retail stage (Stage 1) follows a discrete 
uniform distribution U {0, 4} for the first 4 periods and a discrete uniform distribution U 
{5, 8} for the remaining 8 periods. 

• Normal Demand: The expected demand at the retail stage (Stage 1) follows a truncated 
normal distribution N (4, 22) at 0 for all 12 periods. 
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  Design Features of the Prompt are as follows 

Step 1. Zero-shot learning 

The prompt we designed operates via zero-shot learning, providing the LLM with all examples. It means the 

model must generate responses solely based on its pre-existing knowledge and the information provided in 

the prompt. 

Step 2. Demand description 

 Unlike reinforcement learning, which involves a training process to improve understanding of the 

environment and demand, since we do not have prior training, providing a detailed and clear demand 

description is crucial to ensure accurate understanding and effective responses. 

Step 3. Downstream orders 

 The prompt considers downstream orders, where information can be delivered quickly and shared efficiently 

across different stages. 

Step 4. Human-designed strategy 

 The inherent LLM strategy is generally sufficient for simple scenarios, such as fixed demands. However, for 

more complex scenarios, like seasonal demand, it is assumed that human-designed strategies can better assist 

LLMs in decision-making. 

Step 5. Chain-of-Thought (CoT) 

The CoT approach can improve the explainability of results. By guiding the LLM through a structured 

reasoning process, CoT helps the model better understand the scenario and enhance its reasoning, ultimately 

leading to more reliable, accurate outcomes. 

3|Experiments 

In this section, we evaluate the performance of InvAgent, our proposed LLM based on a multi-agent 

inventory management system, by describing the experimental scenarios, baseline models, and experimental 

settings. Then, we present results demonstrating the adaptability and efficiency of InvAgent, summarized 

with ablation studies to assess the impact of various prompt components in dynamic SCM. 

To evaluate InvAgent's performance in a multi-layer supply chain, a set of experimental scenarios was 

designed. Each scenario provides specific conditions to examine the robustness and adaptability of the 

proposed model. The goal of these scenarios is to simulate various situations that a supply chain might 

encounter in real-world conditions. 

3.1|Experimental Scenario Features 

Dynamic demand scenarios: situations where customer demand changes unexpectedly. Assessing how the 

model adapts to complex patterns and extreme demand fluctuations. 

Resource constraint scenarios: limitations in production capacity, storage space, and transportation. Analyzing 

model performance under conditions where resources are insufficient to meet demand. 

Multi-period scenarios: include delays in transferring materials between different supply chain stages and the 

evaluation of the impact of scheduling on inventory and production. 

Seasonal demand scenarios: demand fluctuations based on seasons, such as increased demand during peak 

sales periods. Assessing the model's ability to predict and manage inventory for specific periods. 
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  3.2|Parameter Configuration 

Parameters used in these scenarios are summarized in Table 2 and include: 

I. Demand levels: minimum, average, and maximum demand per period. 

II. Production capacity: possible production at each stage of the supply chain. 

III. Lead times: delays in transferring materials between supply chain stages. 

IV. Associated costs: including production, inventory holding, and penalty costs. 

 

Table 2. Parameter arrangement for different supply chain scenarios. 

 

 

 

 

 

 

  

 

In the first scenario, a 4-stage supply chain with a constant demand of 4 units per period is tested over more 

than 12 time periods, starting with an inventory of 12 units at each stage and a 2-period lead time. This 

scenario aims to examine the model's basic performance under stable conditions. The second scenario 

introduces variable demand, uniformly distributed between 0 and 4 units per period, to assess the system's 

ability to manage fluctuating demand while maintaining efficient inventory levels. The third scenario further 

increases demand variability, with a uniform distribution between 0 and 8 units per period, and sets the sales 

and ordering costs at five units per period. This scenario tests the model's capacity to handle high variability 

and financial impacts. The fourth scenario simulates seasonal demand with a step pattern ranging from 4 to 

8 units per period, while maintaining the same financial parameters as in the third scenario, to evaluate system 

performance under variable but predictable demand patterns. Finally, the fifth scenario involves normally 

distributed demand with a mean of 4 units and a standard deviation of 2 units per period, along with different 

lead times, initial inventories, sales prices, and ordering costs at all stages. This scenario examines system 

performance under more realistic demand fluctuations and varying operational constraints. Collectively, these 

scenarios provide a testbed for evaluating the efficiency and adaptability of our multi-agent system in dynamic 

inventory management within a multi-layered supply chain. 

3.3|Experimental Settings 

The performance of our model, InvAgent, is evaluated by the cumulative reward across all stages and time 

periods within a single simulation (episode). The reported numbers for each experiment are averaged over 

five episodes to reduce uncertainty. For this evaluation, we utilize Python packages such as AutoGen [10], 

Gymnasium [11], and RLlib [12]. We also leverage LLMs, including GPT-4, GPT-4O, and GPT-4-Turbo 

[13]. 

In the constant demand scenario, to improve InvAgent's performance, the final part of the prompt in Fig. 4 

is modified to "([0], [4], or just [8] D)". 

The performance of the baseline models is evaluated using the episode reward, averaged over 100 episodes. 

In the reinforcement learning (RL) section, we explore different hyperparameter settings, including: 

I. Number of hidden units: [128,128] and [256,256]. 

Parameter Constant Variable Larger Seasonal Normal 

Number of stages 4 4 4 4 4 
Number of periods 12 12 12 12 12 
Initial inventory [12,12,12,12] [12,12,12,12] [12,12,12,12] [12,12,12,12] [12,14,16,18] 
Lead times [2,2,2,2] [2,2,2,2] [2,2,2,2] [2,2,2,2] [1,2,3,4] 
Demand 4 U(0,4) U(0,8) C(4,8) N(4,22) 
Production capacities [20,20,20,20] [20,20,20,20] [20,20,20,20] [20,20,20,20] [20,22,24,26] 
Selling prices [0,0,0,0] [0,0,0,0] [5,5,5,5] [5,5,5,5] [9,8,7,6] 
Ordering costs [0,0,0,0] [0,0,0,0] [5,5,5,5] [5,5,5,5] [5,6,7,8] 
Backorder costs [1,1,1,1] [1,1,1,1] [1,1,1,1] [1,1,1,1] [1,1,1,1] 
Holding costs [1,1,1,1] [1,1,1,1] [1,1,1,1] [1,1,1,1] [1,1,1,1] 
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  II. Activation function: ReLU. 

III. Learning rate: 1e-4, 5e-4, 1e-3. 

IV. Training batch size: 500, 1000, 2000. 

V. Minibatch size in Stochastic Gradient Descent (SGD): 32, 64, 128. 

VI. Number of SGD iterations: 5, 10, 20. 

VII. Number of training iterations: 500, 800, 1000, 1500. 

VIII. Discount factor: 1.0. 

In each experiment, 20 random hyperparameter combinations are selected, and the best configuration is 

retained. The final hyperparameters used for all scenarios are provided in Appendix C. Reinforcement 

learning experiments were conducted on an NVIDIA A10 GPU. 

3.4|Experimental Results 

The results of the experiments, presented in Table 3, highlight the performance of various inventory 

management models under different demand scenarios. The InvAgent model, in particular, demonstrated 

remarkable and competitive performance in situations where demand is variable and unpredictable. 

In the variable demand scenario, InvAgent (even without using manually designed strategies) achieved the 

highest average episode reward. Although reinforcement learning models such as MAPPO performed better 

in some scenarios, the adaptability and zero-shot capability of InvAgent provided unique advantages. This 

feature enables InvAgent to make reasonable decisions and understand complex concepts without the need 

for training examples or prior data, functioning much like human intuition. 

3.4.1|Superiority of invagent compared to heuristic models 

Compared to heuristic models such as the Base-Stock Policy and Tracking-Demand Policy, InvAgent shows 

significant Superiority. These traditional models rely on historical or static data and often perform inefficiently 

when demand patterns exhibit severe, unpredictable changes. In contrast, InvAgent dynamically adapts to 

real-time conditions and: 

I. Minimizes inventory holding costs. 

II. Prevents stockouts and supply delays. 

The performance of InvAgent under variable-demand conditions was particularly notable, clearly 

demonstrating its ability to handle complex, unpredictable scenarios. These results indicate that InvAgent not 

only reduces costs compared to heuristic models but also provides better adaptability. 

3.4.2|Summary of experimental results 

InvAgent demonstrates strong capabilities in reducing costs, managing variable demand scenarios, and 

preventing stock shortages. Compared to heuristic models, it offers higher flexibility and better performance 

under complex conditions. Compared to reinforcement learning models, it is simpler, more stable, and less 

costly to implement, though it may achieve lower precision in some cases. These characteristics make 

InvAgent a suitable and efficient solution for inventory management in Behpakhsh's supply chain, 

highlighting its ability to optimize supply chain processes and adapt to variable conditions. 
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  Table 3. Avg. episode rewards (±SD) for inventory models across demand scenarios. 

 

 

 

 

 

The comparison of InvAgent's performance in inventory management of BehPakhsh's supply chain indicates 

that the intrinsic strategy of the Large Language Model (LLM) is generally sufficient for many simpler 

scenarios, such as constant and variable demand. This capability stems from the LLM's inherent features, 

which enable dynamic, adaptive decision-making without the need for manually designed strategies. 

However, in more complex scenarios, such as seasonal or patterned demands, incorporating human-designed 

strategies into the model significantly improves decision-making quality and overall performance. It highlights 

the importance of combining the LLM's intrinsic capabilities with specific strategies to address complex 

conditions in BehPakhsh's supply chain. 

3.5|Attrition Studies in Behpakhsh Company: Examining the Impact of 

Prompt Components in the InvAgent Model 

To evaluate the impact of different prompt components on the InvAgent model's performance in managing 

Behpakhsh Company's supply chain under a variable-demand scenario, ablation studies were conducted. 

Details of this study are presented in Table 4. 

Scenario study: demand randomly varies between 0 and 4 units per period. These variations are repeated over 

12 periods to simulate demand dynamics and uncertainty. 

3.5.1|Results of ablation studies 

Prompt without strategy section: This performed best in this scenario. Other models were compared using 

this prompt as the reference. 

Impact of different prompt components: this component of the prompt played a key role in improving model 

performance by providing precise information about demand fluctuations. This component optimized the 

model's performance in coordinating with downstream levels of the supply chain, thereby reducing delays. 

By utilizing agents' historical activity, the model was able to make more informed decisions. This feature 

allowed the model to leverage all previous messages throughout the episode. Reasoning through the CoT 

made the model's decision-making more structured and transparent. This process played an important role in 

inventory management, helping prevent stockouts and overstocking. 

3.5.2|Prompt examples and model responses 

An example of a prompt and the InvAgent model's response for a constant demand scenario using GPT-4 is 

shown in Fig. 9. The prompt included a detailed description of the current state, a demand description 

specifying expected retail demand, and a description of a strategy aligning open orders with expected 

downstream orders while considering lead times and the bullwhip effect. In response, the retail agent, given 

that the current inventory is sufficient to meet maximum demand for up to 3 periods with a 2-period lead 

time, decides not to place an order in this period to prevent excess inventory accumulation, as explained in 

the agent's reasoning. 

3.5.3|Analysis of the invagent application in behpakhsh 

This example demonstrates how InvAgent can make intelligent decisions across various supply chain 

scenarios for Behpakhsh using precise prompts and logical analysis. In this example: 

Model Constant Variable Larger Seasonal Normal 

Base-stock -296.00 -523.69 -392.21 -274.29 -322.44 

Demand tracking -360.00 -412.41 -265.07 -421.90 -232.20 
IPPO -132.17 -389.55 -202.39 -129.73 -102.90 
MAPPO -129.81 -391.53 -106.79 -99.39 -41.98 
InvAgent (w/o strategy) -156.00 -336.60 -350.20 -488.00 -172.60 
InvAgent (w/ strategy) -200.00 -377.60 -357.60 -420.60 -192.40 
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  I. Prevention of inventory accumulation: the model's decision helps reduce holding costs and prevents resource 

wastage. 

II. Consideration of lead times and bullwhip effect: By accounting for lead times, InvAgent aligns new orders 

with current conditions. 

III. Logical and transparent response: transparency in decision-making logic increases trust in the model and 

enables review and evaluation of responses. 

This approach not only demonstrates InvAgent's high adaptability but also highlights its role in improving 

inventory management and reducing costs in Behpakhsh's supply chain. 

Evaluation of base exploratory variables results 

The evaluation results of base stock policies and demand-tracking policies are presented in Table 5. These 

evaluations show how different inventory policies perform under various demand conditions. In the first part 

of the table, the performance of the base-stock policy is shown for different desired inventory levels, based 

on production capacity. The results indicate that maintaining a lower inventory level generally performs better 

under varying demand conditions. In the second part, five types of demand-tracking policies are presented, 

defined using various formulas including sales, lead time, and backlog. While none of these policies 

consistently outperform the others, averaging sales is generally effective in managing variable demand in most 

scenarios. 

3.6|Case Studies at Behpakhsh: Evaluating InvAgent Performance under 

Different Demand Scenarios 

This section presents two case studies of InvAgent's performance in managing inventory in Behpakhsh's 

supply chain. These studies examine variable demand scenarios without a strategy and seasonal demand with 

a strategy. The supply chain structure in both scenarios includes four stages: retailer, wholesaler, distributor, 

and manufacturer, flowing from downstream to upstream. 

Variable demand scenario: innovative performance analysis in Behpakhsh's supply chain 

Under variable demand, InvAgent's performance in managing demand changes, inventory, accumulation, and 

profit in Behpakhsh's supply chain was examined. As shown in Fig. 10, the model responded to demand 

dynamics through real-time understanding and proper timing. 

Supply chain response to demand changes 

I. At the start of the simulation, demand suddenly increases, and the retailer, as the first point of contact with 

customers, faces inventory depletion. 

II. Retailer action: to meet customer demand, the retailer places new orders with the wholesaler. 

III. Inventory stabilization: due to supply chain lead times (from manufacturer to retailer), the retailer's 

inventory is not immediately stabilized. 

IV. Wholesaler and distributor actions: as intermediary links, they fulfill orders for upstream customers and 

replenish their inventory after receiving orders from retailers. 

V. Manufacturer: at the top of the supply chain, manufacturers process incoming orders and convert raw 

materials into products. 

Inventory accumulation at the distributor 

Midway through the simulation, inventory accumulation at the distributor reached its peak due to: 

I. Previous inventory depletion: In period 6, the distributor's inventory is exhausted because new orders were 

either not placed on time or delayed by transfer lead times. 

II. High accumulation in period 7: Newly arrived inventory in period 7 causes accumulation at the distributor. 
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  Lessons learned and recommendations 

I. Lead time management: to prevent accumulation or shortages, the distributor should place orders 

considering supply chain lead times, stabilizing inventory flow. 

II. Demand forecasting: accurate forecasts from InvAgent can optimize inventory provisioning across supply 

chain levels. 

III. Supply chain coordination: all levels, from manufacturer to retailer, must coordinate orders to ensure timely 

inventory transfer. 

Seasonal demand scenario: Inventive performance analysis at Behpakhsh 

Under seasonal demand, InvAgent reacts to changing demand patterns and their impact on inventory, 

accumulation, and profit. This scenario is designed based on different demand patterns across time periods. 

Fig. 11 shows how the model places orders and manages inventory. 

Demand pattern in the scenario 

I. Periods 1–4: demand follows a uniform distribution, ranging from 0 to 4 units per period. 

II. Periods 5–12: demand shifts to a different uniform distribution, indicating a peak period. 

Model performance across periods 1–4: increased downstream orders 

I. Retailers and wholesalers anticipate increased future demand and place larger orders with the distributor. 

II. Distributor and manufacturer: attempt to procure large amounts from upstream suppliers, quickly 

depleting manufacturer inventory and increasing new orders from the distributor. 

Period 4: accumulation and reduced manufacturer profit 

I. Inventory accumulation: increased order volume in period 4 significantly reduces manufacturer inventory 

and increases supply chain accumulation. 

II. Profit reduction: due to inventory management costs and poor coordination, the manufacturer's profit 

reaches a minimum. 

Periods 5–12: restoring balance and flexibility 

Order management: the manufacturer starts ordering raw materials and gradually restores inventory and 

orders to balance. 

Reduced accumulation: improved order management and better supply chain coordination reduce inventory 

accumulation and enhance profitability . 



 Bagherian et al. | Sup. Chain Oper. Decis. Mak. 2(3) (2025) 156-172 

 

169

 
   

 

Fig .9. Example of InvAgent input and response for a constant demand scenario in the 

company to broadcast using GPT-4. 

 

Example 

Reason: By forecasting future demand for the next two periods (considering lead time) 

and noting that current inventory is sufficient to meet maximum demand for three 

periods, I decided not to place any orders this period to avoid excessive inventory buildup. 

Action: [0] 

Currently, this is the first period, and you are at stage 1 of 4 in the supply chain. Based on 

your current status: 

• Lead time: 2 periods 

• Current inventory: 12 units 

• Current backlog (your debt to downstream): 0 units 

• Upstream backlog (upstream debt to you): 0 units 

• Past sales (in recent periods, from oldest to newest): [0, 0] 

• Incoming deliveries (in this period and subsequent periods, from near to far): [0, 0] 
The forecasted demand at the retailer (stage 1) is a discrete uniform distribution U {0,4} 

for all 12 periods. What will be your action (order quantity) for this period? 

Golden rule of this game: Open orders should always equal “expected downstream 

orders + backlog.” If open orders exceed this amount, inventory will increase (once orders 

arrive). If open orders are less than this amount, the backlog will not decrease and may 

even increase. Please consider lead time and pre-place your orders. Note that your 

upstream stage also has its lead time, so do not wait until your inventory runs out. Also, 

avoid placing large orders at once. Try to spread your orders over multiple periods to 

prevent the bullwhip effect. Forecast future demand changes and adjust your orders 

accordingly to maintain stable inventory levels. 

First, state your reasoning in 1–2 sentences, then enter your action as a non-negative 

number in brackets (e.g., [0]) 

 

Retailer Agent (via User Interface): 

Reason: By forecasting future demand over the next two periods (considering the lead time) 

and noting that the current inventory is sufficient to meet maximum demand for the next 

three periods, I decided not to place any order this period to prevent excessive inventory 

accumulation. 

Action: [0] 
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  Table 5. Evaluation results (average episode rewards and standard deviations) for 

a variety of norm-based models in different demand scenarios for broadcasting. 

 

 

 

  

 

 

 Table 6. Hyperparameters for independent neighbor policy optimization (IPPO) with 

parameter sharing as a basis for comparison in broadcast. 

 

 

 

 

 

Table 7. Hyperparameters for the basic multi-agent proximal policy optimization 

(mappo) model. 

 

 

 

 

 

 

Fig. 10. Inventory, backlog, orders, and profit under variable demand 

(InvAgent, no strategy). 

 

Inventory Constant Variable Larger Seasonal Normal 

0.8cm -208.00 -435.69 -234.28 -207.75 -150.67 

0.9cm -252.00 -479.69 -310.74 -229.08 -226.31 

cm -296.00 -523.69 -392.21 -274.29 -322.44 

Sm,t−1Lm + Bm,t−1 -364.00 -390.17 -393.31 -525.84 -283.39 

Sm,t−1ሺLm + 1ሻ + Bm,t−1 -120.00 -395.68 -470.55 -524.26 -351.23 

S᪄m,t−1Lm + Bm,t−1 -360.00 -412.41 -265.07 -421.90 -232.20 

S᪄m,t−1ሺLm + 1ሻ + Bm,t−1 -252.00 -382.77 -489.75 -610.03 -177.54 

1.2S᪄m,t−1Lm + Bm,t−1 -361.00 -397.22 -325.81 -479.07 -218.98 

Parameter Constant Variable Larger Seasonal Normal 

Hidden units [128,128] [256,256] [128,128] [128,128] [128,128] 
Activation function ReLU ReLU ReLU ReLU ReLU 
Learning rate 0.0001 0.0001 0.001 0.0005 0.0005 
Training batch size 1000 1000 2000 2000 1000 
SGD mini-batch size 128 128 128 128 128 
SGD iterations 5 10 5 5 5 
Training episodes 1000 1500 1000 800 500 

Parameter Constant Variable Larger Seasonal Normal 

Hidden units [128,128] [128,128] [128,128] [256,256] [128,128] 
Activation function ReLU ReLU ReLU ReLU ReLU 
Learning rate 0.0001 0.0001 0.001 0.0001 0.0001 
Training batch size 500 2000 2000 1000 500 
SGD mini-batch size 128 32 32 128 128 
SGD iterations 10 5 10 10 10 
Training episodes 500 500 800 1500 500 
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4|Conclusion  

In this study, the effectiveness of using LLMs as autonomous agents in multi-agent inventory management 

for optimizing the Behpaksh supply chain was investigated. Our innovative model, InvAgent, was able to 

make adaptive and informed decisions without the need for prior training by leveraging the zero-shot learning 

capabilities of LLMs. One of the outstanding features of InvAgent was its integration of structured reasoning 

via the CoT method, which improved the model's explainability and transparency. This feature made 

InvAgent a more reliable system than traditional heuristic and reinforcement learning models.  

Key results  

I. Competitive performance: Invariant demonstrated superior performance and lower costs across various 

demand scenarios compared to heuristic policies.  

II. Adaptability: the model adapted to complex, unpredictable demand changes and minimized shortages.  

III. High potential: the use of LLMs for intelligent SCM highlighted reductions in inventory costs and improved 

decision-making.  

Future outlook  

To expand the capabilities of InvAgent and improve its performance in the Behpaksh Company's supply 

chain, the following axes will be considered in future research:  

I. Use of reinforcement learning: tuning the model to improve decision-making capabilities through iteration 

and learning optimal strategies.  

II. Evaluation with real-world data: 1) using real supply chain data, including seasonal and variable demand 

patterns, to practically evaluate the model's performance, and 2) decomposing data into level, trend, and 

seasonal components to improve forecast accuracy. 

III. Combining human-designed strategies with the inherent capabilities of LLMs: improving the management 

of complex and unpredictable demand patterns by combining these two approaches.  

Final conclusion  

The InvAgent model demonstrated how new technologies, such as LLMs, can make Behpaksh Company's 

supply chain more efficient and flexible. This research is an important step towards the digitalization and 

intelligence of SCM and enables the use of advanced solutions to manage future challenges. 

Table 8. Ablation of InvAgent prompts in variable demand; rewards 

averaged over 5 trials (±SD) with % change from first result. 

 

 

 

 

 

 

 

 

Model Reward Performance change 

GPT-4 -336.60 0.00% 
GPT-4 -377.60 -12.18% 
GPT-4 -349.40 -3.80% 
GPT-4 -419.00 -24.48% 
GPT-4 -379.40 -12.72% 
GPT-4 -339.20 -0.77% 
GPT-4 -369.80 -9.86% 
GPT-4 -387.40 -15.09% 
GPT-4o -405.00 -20.32% 
GPT-4-Turbo -636.40 -89.07% 
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