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Abstract

Behpakhsh Company, as one of the largest distribution and logistics companies in the country, plays a significant role
in Supply Chain Management (SCM). SCM involves coordinating and integrating material, information, and financial
flows across units to ensure the efficient and effective procurement and distribution of goods. In today's Volatile,
Uncertain, Complex, and Ambiguous (VUCA) environment, effective inventory management is essential for the
operational success of distribution companies. This paper examines the innovative approach adopted by Behpakhsh
Company to leverage InvAgent technology, an artificial intelligence—based language model that uses zero-shot
learning to enhance inventory management and reduce costs. By analyzing data and making intelligent decisions
under changing conditions, InvAgent improves transparency and adaptability across Behpakhsh's supply chain. The
implementation of this model has not only increased efficiency and productivity in Behpakhsh's distribution
operations but also helped mitigate the risks of inventory shortages and excessive stockpiling. Ultimately, this study
demonstrates that Behpakhsh, through advanced technologies and Large Language Models (ILLMs), has achieved
improved supply chain performance and enhanced customer satisfaction.

Keywords: Behpakhsh supply chain management, Inventory management, Large language model, Zero-shot
learning, InvAgent.

1| Introduction

Supply Chain Management (SCM) involves the coordination and management of the flows of goods,
information, and finances across interconnected and diverse entities, from suppliers to consumers, to deliver
products efficiently and effectively. Inventory management, as a vital component of SCM, focuses on
monitoring and controlling ordering, storage, and utilization of components and finished products. In today's
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Volatile, Uncertain, Complex, and Ambiguous (VUCA) world, effective inventory management is essential
for aligning supply and demand, minimizing costs, and enhancing supply chain resilience. It enables firms to
remain confident in their ability to adapt to disruptions (Quan et al. [1]), optimize resources (Abaku et al. [2]),
and sustain uninterrupted operations (Yasmin [3]) in a highly interconnected, dynamic market environment.
Previous studies on inventory management have explored various applications of heuristic approaches, such
as the Beer Distribution Game [4-6]. In addition, numerous applications of reinforcement learning—based
models have been investigated, including decentralized inventory management (Mousa et al. [7]) and adaptive
supply chain synchronization (Kegenbekov and Jackson [8]). However, these approaches often require
complex model design and extensive training resources and generally lack explainability. Despite these
advances, the application of Large Language Models (LLMs) to address multi-agent Inventory Management
Problems (IMP) in the supply chain of Behpakhsh Company has not yet been comprehensively investigated.
In this study, InvAgent is introduced as an innovative LLM-based zero-shot multi-agent inventory
management system. By leveraging the advanced capabilities of LLMs, this system enhances the operational
resilience of Behpakhsh's supply chain and strengthens collaboration among its network components.

The InvAgent approach utilizes the reasoning and decision-making capabilities of LLMs to achieve better
coordination, optimize inventory management processes, and enhance transparency and adaptability within
Behpakhsh's supply chain. The proposed framework of this paper, illustrated in Fig. 7, comprehensively
explains the operational mechanism of InvAgent and its impact on improving the efficiency of Behpakhsh's

supply chain network.
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Fig. 1. Illustrates the InvAgent framework.

Fig. 1 illustrates the InvAgent framework, a Zero-Shot LLM-based multi-agent inventory management system.
First, the user proxy resets the environment at the beginning of the first episode. In the second step, the user
proxy requests the current episode state for each stage from the environment. Then, the user proxy provides
the current state to each stage and requests an action from it. Finally, all agents take actions simultaneously
and transition to the next state.

Our contributions in this paper, with a focus on Behpakhsh Company, are summarized as follows:
Utilizing large language models for multi-agent inventory management

In this study, the Zero-Shot learning capabilities of LLMs are employed to manage the multi-agent inventory
management systems of Behpakhsh Company. This capability enables adaptive and informed decision-
making without the need for prior training or explicitly provided examples, thereby enhancing system
flexibility.

Model explainability and transparency

The proposed model offers a high level of explainability, further enhanced by Chain-of-Thought (CoT)
reasoning. This feature facilitates a clearer understanding of the model's behavior and increases trust in its
outcomes, making it a more reliable system compared to traditional heuristic and reinforcement learning

approaches.
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Dynamic adaptation to variable demand

Our model dynamically adapts to different demand scenarios, thereby minimizing costs and preventing
inventory shortages. Through extensive evaluation across diverse scenarios, this capability demonstrates
improved efficiency in Behpakhsh Company's SCM and optimizes inventory management processes.

These contributions enable Behpakhsh Company to enhance its supply chain productivity by leveraging
advanced technologies and to deliver more reliable and transparent operational performance.

2| Methodology

This section describes the methodological framework for designing and implementing the InvAgent model.
This methodology involves defining a multi-layer, multi-period production—inventory system to model and
simulate the supply chain processes of the Behpakhsh Company. Subsequently, the proposed InvAgent model
is introduced as an LLM-based multi-agent inventory management system, which is designed to optimize
supply chain operations

2.1| Problem Definition

A multi-layer, multi-period production—inventory system is designed to model and simulate a typical multi-
stage supply chain for the production and distribution of non-perishable goods. As illustrated in Fig. 2, each
stage of the supply chain consists of an inventory storage area (for storing essential materials required for
production) and a production facility (for converting raw materials into products).

System characteristics:
1. The output materials of stage i are used as the input materials for stage i—1.

II.  The stages are indexed in descending order, from stage M—1 (the upstream beginning of the supply chain)
to stage 0, which represents the retail level.

III.  Production at each stage is constrained by both the production capacity and the available inventory at that
stage.

IV. The flow of raw materials starts from upstream stages and eventually reaches the retail stage to satisfy

customer demand.

Time periods (T): the supply chain is divided into discrete time periods t. Each simulation starts at t = 0 with
initial conditions, and during each time period T, the following events occur:

Shipment review: each stage receives its inbound shipments that arrive after completing the corresponding
transportation lead times.

Order and demand review: each stage places replenishment orders to its corresponding suppliers. Orders are
placed based on available production capacity and suppliers' inventory levels. Customer demand at the retail
stage is fulfilled based on available inventory.

Order and demand fulfillment: each stage delivers products up to its maximum feasible capacity to satisfy
incoming demands or replenishment orders. Orders and demands that cannot be fulfilled within the current
time period are prioritized in the subsequent period.

Profit calculation: each stage calculates the costs and profits associated with the following activities: product

sales, raw material ordering, penalties for delayed fulfillment, and Holding costs for excess inventory.
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This multi-layer, multi-period production—inventory system provides the foundational structure for analyzing
and simulating the supply chain processes of the Behpakhsh Company. It accurately models transportation,
production, and inventory management processes. The proposed InvAgent leverages this structure to
enhance supply chain performance and reduce operational costs.
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Fig. 2. Flowchart of inventory management of a multi-tier supply chain.

In Fig. 2, Raw materials flow through each stage, which includes inventory storage and production facilities.
The upstream plant at stage i supplies intermediate products to stage i-1 below, where they are stored as
inventory. Stage O (retail) supplies finished products to meet customer demand. Considering the items
mentioned in Table 1, the overall inventory management problem (IMP), which is taken from Hubbs et al.
[9], can be described using the following equations:

Im,t == Im,t—l + Rm,t—Lm - Sm,t' fOI‘ all m E M, (1)
Rm,t = min(Bm+1't_1 + Om,t,Cm+1: Im+t,t—1 + Rm+1,t—Lm+1) ) for all m = 0, ey M — 2, (Za)
RM-1t = OM—l,tr (2b)
Smt=Rm-16 forallm=1,..,M—1, (32)
Sot = min(Bg 1 + Dicy lot-1 + RO,t—LO): (3b)
Bm,t = BM,t—l + Om—l,t - Sm,t' for all m = 1, ey M — 1, (4a)
Bot = Bot-1+ Dt = Sop (4b)
Pot = PmSmt — 'mRmt — KmBmt — hmIm forallm € M. 5)

In Eg (7), the current inventory at stage m at the end of the current time period t is equal to the ending
inventory of the previous period, plus the fulfilled order from period t — Lm, minus the sales during the
current period. In Eg (2.a), the fulfilled orders at stage m placed during time period t are determined by the
minimum of the following three components: 1) the previous backlog at the downstream stage plus the newly
requested orders, 2) the production capacity of the upstream stage, and 3) the total available inventory at the
upstream stage m + 1 at the beginning of time period 7 which includes the remaining inventory from the
previous period and newly arrived orders after accounting for the transportation lead time. The final fulfilled
order is the minimum of these three values, ensuring the order does not exceed any of them. It ensures the
supply chain operates within inventory and capacity limits, preventing overcommitment and inventory
shortages. Eg (2.5) indicates that requested orders at the highest stage are always fulfilled, since an unlimited
supply of raw materials is assumed at this stage. As shown in Eg (3.a), sales are always equal to the fulfilled
orders, except at stage 0 (the retailer). In Eg. (3.0), sales at stage 0 (the retailer) during time period t are
determined by the minimum of the following three components: 1) the previous backlog at stage 0 plus the
current customer demand, 2) the production capacity at stage 0, and 3) the total available inventory at stage 0
at the beginning of time period t, which consists of the remaining inventory from the previous period and
newly fulfilled orders after accounting for transportation lead time. It ensures that retail sales do not exceed
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total demand, production capacity, or available inventory. In Eg. (4.a), the backlog at stage m during time
period t, for all stages except the retailer, is calculated as the sum of the previous backlog at that stage and the
orders requested from the downstream stage, minus the sales at stage m. In Eg. (4.5), the backlog at stage 0
(the retailer) during time period t is calculated similarly to Eq. (4.a); however, the requested order is replaced
by customer demand, since the retailer interacts directly with customers. Finally, in Eg. (5), the profit at each
stage m during time period t is calculated as sales revenue minus procurement costs, unmet demand penalty
costs, and inventory holding costs.

Table 1. Parameter symbols and definitions.

Symbol Definitation

m Stagesm € M = {0,1,2,...,M — 1}

t teT={012..T}

It Inventory at the end of time period t

Tm,t Intended inventory at the end of time period t
Omt Requested orders placed in the time period t
Rt Orders filled in the time period t

D Customer demand during the time period t
Smit Sales during the time period t

Bt Backlog at the end of time period t

Ly Transition time between stages m+1 and m
Limax Maximum transition time in the system

Pt Profit at stage m in time period t

Cm Production capacity at stage m

Pm Sales price

I'm Otrder cost (procutement)

K Penalty for unfilled orders

h,, Inventory holding cost

2.2 | InvAgent

In this project, we introduce InvAgent, a LLM—based multi-agent inventory management system designed
for supply chain optimization. InvAgent consists of several key agents, including a user proxy and one agent
for each stage of the supply chain. The user proxy acts as an intermediary between the environment and all
supply chain agents, facilitating communication and data exchange management.

The methodological framework of InvAgent is illustrated in Ijg. 7 and proceeds through the following steps:
1. The user proxy resets the environment at the beginning of the first episode.
II.  The user proxy requests the current episode state for each stage from the environment.
III.  The user proxy provides the state of each stage to the corresponding agent and requests an action from it.

IV. The user proxy sends the agents' actions to the environment and receives the next state and the reward for
that step.

V. The user proxy determines whether the simulation has terminated; if not, the simulation returns to Step 2.

At the beginning of the simulation, we generate system messages for the agents (as shown in Fig 3) that
provide essential information, such as definitions, roles, and objectives, within the supply chain. The agent
state Sm,tS_{m,t}Sm,t and action am,ta_{m,t}amt are defined as follows:

Smt =
[Cm' Pm:Tm», km' hm' Lm' Im,t—l: Bm,t—l: Bm+1,t—1: Sm,t—LmaX' ey Sm,t—l: 0: :01 Rm,t—Lm: ey Rm,t—l]:

and
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dmt = Om,ti

The state comprises the current stage, inventory level, backlog, upstream backlog, recent sales, and received
deliveries, with zero remaining layers. As illustrated in Fjg. 4, the prompt is designed to collect state
information and action requests from each agent to ensure effective decision-making and transparent
communication across the supply chain. It includes contextual information such as the current time step, the
stage, and the stage index, which indicate the model's position within the supply chain. The state description
(Fig. 5) provides a comprehensive snapshot of inventory levels, backlogs, past sales, and incoming deliveries,
thereby enabling informed decision-making. Demand details (Fzg. 6) and downstream orders (Fg. 7) help link
supply decisions to immediate needs, allowing upstream suppliers to respond rapidly to downstream orders
or demand signals. The strategy description (Fig. &) highlights guidelines such as accounting for lead times
and avoiding over-ordering to maintain inventory balance. By requiring justification before action selection,

the prompt promotes transparency and interpretability in the decision-making process.

System Message:

Retailer: You play a vital role as Stage 1 (Retailer) in a four-stage supply
chain. Your objective is to minimize the total cost by effectively managing

inventory and orders.

Wholesaler: You play a vital role as Stage 2 (Wholesaler) in a four-stage
supply chain. Your objective is to minimize the total cost by effectively
managing inventory and orders.

Fig. 3. System messages that provide critical information, such as definitions, roles,
and objectives in the supply chain.

Prompt:

You are curtently at petiod {time petiod}, and you are at stage {stage} out of
{number of stages} in the supply chain. Given the current situation:

{State desctiption}

{Demand description} {Downstream order description}
What is your action (order quantity) for this period?
{Strategy description}

Please first explain your reasoning in 1-2 sentences, and then state your action as a
non-negative number enclosed in brackets (e.g., [0])

Fig. 4. Prompt for inventory management simulation in LLMs (see Figs. 5-8).
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Demand Description:
e Constant Demand: The expected demand at the retail stage (Stage 1) is a fixed demand of
4 units for all 12 periods.

e Variable Demand: The expected demand at the retail stage (Stage 1) follows a discrete
uniform disttibution U {0, 4} for all 12 petiods.

e Higher Demand: The expected demand at the retail stage (Stage 1) follows a discrete
uniform disttibution U {0, 8} for all 12 petiods.

e Seasonal Demand: The expected demand at the retail stage (Stage 1) follows a discrete
uniform disttibution U {0, 4} for the first 4 petiods and a disctete uniform distribution U
{5, 8} for the remaining 8 petiods.

e Normal Demand: The expected demand at the retail stage (Stage 1) follows a truncated
normal distribution N (4, 22) at O for all 12 periods.

Fig. 5. Upon receiving deliveries, we select the next Lm interval.

Status Description:
- Lead time: {Lead time} cycles
- Inventoty level: {Inventory} units
- Current backlog (you owe the downstream stage): {Backlog} units
- Upstream backlog (the upstream stage owes you): {Upstream backlog} units
- Previous sales (in recent cycles, from oldest to newest): {Sales}
- Incoming deliveties (in this cycle and upcoming cycle(s), from nearest to farthest): {Deliveries}

Fig. 6. Demand description for the different demand scenarios included in the order.
Bottom Order Description:

Your bottom otder from stage {stage-1} for this round is
{[stage-1] actions}.

Fig. 7. Downward ordering from the previous to the current stage in a cycle that can
transfer downstream information faster.

Strategy Description:

The golden rule of the game: Open orders should always be equal
to “Expected down Orders + Backlogs”. If open orders are larger
than this, inventory will increase (as soon as open orders atrive). If
open orders are smaller than this, the backlog will not decrease and
may even increase. Please plan in advance when and where to
transfer your order. Remember that your upstream stage has its own
transfer time, so don’t wait until the inventory runs out. Also, avoid
ordering multiple units at once. Try to spread your order over
multiple rounds to avoid the bullwhip effect. Anticipate future order
changes and adjust your orders accordingly to maintain a stable

inventory level.

Fig. 8. Strategy description introducing the golden rule and decision-making
guidance for the LLM.
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Design Features of the Prompt are as follows
Step 1. Zero-shot learning

The prompt we designed operates via zero-shot learning, providing the LLM with all examples. It means the
model must generate responses solely based on its pre-existing knowledge and the information provided in
the prompt.

Step 2. Demand description

Unlike reinforcement learning, which involves a training process to improve understanding of the
environment and demand, since we do not have prior training, providing a detailed and clear demand
description is crucial to ensure accurate understanding and effective responses.

Step 3. Downstream orders

The prompt considers downstream orders, where information can be delivered quickly and shared efficiently

across different stages.
Step 4. Human-designed strategy

The inherent LLM strategy is generally sufficient for simple scenarios, such as fixed demands. However, for
more complex scenarios, like seasonal demand, it is assumed that human-designed strategies can better assist
LLMs in decision-making.

Step 5. Chain-of-Thought (CoT)

The CoT approach can improve the explainability of results. By guiding the LLM through a structured
reasoning process, CoT helps the model better understand the scenario and enhance its reasoning, ultimately

leading to more reliable, accurate outcomes.
3 | Experiments

In this section, we evaluate the performance of InvAgent, our proposed LLM based on a multi-agent
inventory management system, by describing the experimental scenarios, baseline models, and experimental
settings. Then, we present results demonstrating the adaptability and efficiency of InvAgent, summarized
with ablation studies to assess the impact of various prompt components in dynamic SCM.

To evaluate InvAgent's petformance in a multi-layer supply chain, a set of expetimental scenatios was
designed. Each scenario provides specific conditions to examine the robustness and adaptability of the
proposed model. The goal of these scenarios is to simulate various situations that a supply chain might

encounter in real-world conditions.
3.1| Experimental Scenario Features

Dynamic demand scenarios: situations where customer demand changes unexpectedly. Assessing how the
model adapts to complex patterns and extreme demand fluctuations.

Resource constraint scenarios: limitations in production capacity, storage space, and transportation. Analyzing
model performance under conditions where resources are insufficient to meet demand.

Multi-period scenatios: include delays in transferring materials between different supply chain stages and the
evaluation of the impact of scheduling on inventory and production.

Seasonal demand scenarios: demand fluctuations based on seasons, such as increased demand during peak
sales periods. Assessing the model's ability to predict and manage inventory for specific periods.
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3.2 | Parameter Configuration

Parameters used in these scenarios are summarized in Table 2 and include:
1. Demand levels: minimum, average, and maximum demand per period.
II.  Production capacity: possible production at each stage of the supply chain.
III.  Lead times: delays in transferring materials between supply chain stages.

IV.  Associated costs: including production, inventory holding, and penalty costs.

Table 2. Parameter arrangement for different supply chain scenarios.

Parameter Constant Variable Larger Seasonal Normal
Number of stages 4 4 4 4 4

Number of periods 12 12 12 12 12

Initial inventory [12,12,12,12]  [12,12,12,12] [12,12,12,12] [12,12,12,12] [12,14,16,18]
Lead times [2,2,2,2] [2,2,2,2] [2,2,2,2] [2,2,2,2] [1,2,3,4]
Demand 4 U(0,4) U(0,8) C(4,8) N(4,22)
Production capacities  [20,20,20,20]  [20,20,20,20]  [20,20,20,20]  [20,20,20,20]  [20,22,24,20]
Selling prices [0,0,0,0] [0,0,0,0] [5,5,5,5] [5,5,5,5] [9,8,7,6]
Ordering costs [0,0,0,0] [0,0,0,0] [5,5,5,5] [5,5,5,5] [5,6,7,8]
Backorder costs [1,1,1,1] [1,1,1,1] [1,1,1,1] [1,1,1,1] [1,1,1,1]
Holding costs [1,1,1,1] [1,1,1,1] [1,1,1,1] [1,1,1,1] [1,1,1,1]

In the first scenario, a 4-stage supply chain with a constant demand of 4 units per period is tested over more
than 12 time petiods, starting with an inventory of 12 units at each stage and a 2-period lead time. This
scenario aims to examine the model's basic petformance under stable conditions. The second scenario
introduces variable demand, uniformly distributed between 0 and 4 units per petriod, to assess the system's
ability to manage fluctuating demand while maintaining efficient inventory levels. The third scenario further
increases demand variability, with a uniform distribution between 0 and 8 units per period, and sets the sales
and ordering costs at five units per period. This scenario tests the model's capacity to handle high variability
and financial impacts. The fourth scenario simulates seasonal demand with a step pattern ranging from 4 to
8 units per period, while maintaining the same financial parameters as in the third scenario, to evaluate system
performance under variable but predictable demand patterns. Finally, the fifth scenario involves normally
distributed demand with a mean of 4 units and a standard deviation of 2 units per period, along with different
lead times, initial inventories, sales prices, and ordering costs at all stages. This scenatio examines system
performance under more realistic demand fluctuations and varying operational constraints. Collectively, these
scenatios provide a testbed for evaluating the efficiency and adaptability of our multi-agent system in dynamic
inventory management within a multi-layered supply chain.

3.3 | Experimental Settings

The performance of our model, InvAgent, is evaluated by the cumulative reward across all stages and time
periods within a single simulation (episode). The reported numbers for each experiment are averaged over
five episodes to reduce uncertainty. For this evaluation, we utilize Python packages such as AutoGen [10],
Gymnasium [11], and RLIib [12]. We also leverage LLMs, including GPT-4, GPT-40, and GPT-4-Turbo
[13].

In the constant demand scenatio, to improve InvAgent's performance, the final part of the prompt in Fig. 4
is modified to "([0], [4], ot just [8] D)".
The performance of the baseline models is evaluated using the episode reward, averaged over 100 episodes.

In the reinforcement learning (RL) section, we explore different hyperparameter settings, including:

I. Number of hidden units: [128,128] and [256,256].
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II. Activation function: ReLU.
III. Learning rate: 1e-4, 5e-4, 1e-3.
IV. Training batch size: 500, 1000, 2000.
V. Minibatch size in Stochastic Gradient Descent (SGD): 32, 64, 128.
VI. Number of SGD iterations: 5, 10, 20.
VII. Number of training iterations: 500, 800, 1000, 1500.
VIII. Discount factor: 1.0.

In each experiment, 20 random hyperparameter combinations are selected, and the best configuration is
retained. The final hyperparameters used for all scenarios are provided in Appendix C. Reinforcement
learning experiments were conducted on an NVIDIA A10 GPU.

3.4 | Experimental Results

The results of the experiments, presented in Table 3, highlight the performance of various inventory
management models under different demand scenarios. The InvAgent model, in particular, demonstrated
remarkable and competitive performance in situations where demand is variable and unpredictable.

In the variable demand scenario, InvAgent (even without using manually designed strategies) achieved the
highest average episode reward. Although reinforcement learning models such as MAPPO performed better
in some scenarios, the adaptability and zero-shot capability of InvAgent provided unique advantages. This
feature enables InvAgent to make reasonable decisions and understand complex concepts without the need
for training examples or prior data, functioning much like human intuition.

3.4.1| Superiority of invagent compared to heuristic models

Compared to heuristic models such as the Base-Stock Policy and Tracking-Demand Policy, InvAgent shows
significant Superiority. These traditional models rely on historical or static data and often perform inefficiently
when demand patterns exhibit severe, unpredictable changes. In contrast, InvAgent dynamically adapts to
real-time conditions and:

I. Minimizes inventory holding costs.
II. Prevents stockouts and supply delays.

The performance of InvAgent under variable-demand conditions was particularly notable, clearly
demonstrating its ability to handle complex, unpredictable scenarios. These results indicate that InvAgent not
only reduces costs compared to heuristic models but also provides better adaptability.

3.4.2| Summary of experimental results

InvAgent demonstrates strong capabilities in reducing costs, managing variable demand scenarios, and
preventing stock shortages. Compared to heuristic models, it offers higher flexibility and better performance
under complex conditions. Compared to reinforcement learning models, it is simpler, more stable, and less
costly to implement, though it may achieve lower precision in some cases. These characteristics make
InvAgent a suitable and efficient solution for inventory management in Behpakhsh's supply chain,
highlighting its ability to optimize supply chain processes and adapt to variable conditions.
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Table 3. Avg. episode rewards (£SD) for inventory models across demand scenarios.

Model Constant Variable Larger Seasonal Normal
Base-stock -296.00 -523.69  -392.21 -274.29 -322.44
Demand tracking -360.00 -412.41 -265.07  -421.90 -232.20
IPPO -132.17 -389.55  -202.39 -129.73 -102.90
MAPPO -129.81 -391.53  -106.79  -99.39 -41.98

InvAgent (w/o strategy) -156.00 -336.60 -350.20  -488.00 -172.60
InvAgent (w/ strategy)  -200.00 -377.60 -357.60  -420.60 -192.40

The comparison of InvAgent's performance in inventory management of BehPakhsh's supply chain indicates
that the intrinsic strategy of the Large Language Model (LLM) is generally sufficient for many simpler
scenatios, such as constant and variable demand. This capability stems from the LLM's inherent features,
which enable dynamic, adaptive decision-making without the need for manually designed strategies.

However, in more complex scenarios, such as seasonal or patterned demands, incorporating human-designed
strategies into the model significantly improves decision-making quality and overall performance. It highlights
the importance of combining the LLM's intrinsic capabilities with specific strategies to address complex
conditions in BehPakhsh's supply chain.

3.5 | Attrition Studies in Behpakhsh Company: Examining the Impact of
Prompt Components in the InvAgent Model

To evaluate the impact of different prompt components on the InvAgent model's performance in managing
Behpakhsh Company's supply chain under a variable-demand scenatio, ablation studies were conducted.
Details of this study are presented in Table 4.

Scenatio study: demand randomly varies between 0 and 4 units per period. These variations are repeated over
12 periods to simulate demand dynamics and uncertainty.

3.5.1| Results of ablation studies

Prompt without strategy section: This performed best in this scenario. Other models were compared using
this prompt as the reference.

Impact of different prompt components: this component of the prompt played a key role in improving model
performance by providing precise information about demand fluctuations. This component optimized the
model's performance in coordinating with downstream levels of the supply chain, thereby reducing delays.
By utilizing agents' historical activity, the model was able to make more informed decisions. This feature
allowed the model to leverage all previous messages throughout the episode. Reasoning through the CoT
made the model's decision-making more structured and transparent. This process played an important role in

inventory management, helping prevent stockouts and overstocking.
3.5.2| Prompt examples and model responses

An example of a prompt and the InvAgent model's response for a constant demand scenario using GPT-4 is
shown in Fig. 9. The prompt included a detailed description of the current state, a demand description
specifying expected retail demand, and a description of a strategy aligning open orders with expected
downstream orders while considering lead times and the bullwhip effect. In response, the retail agent, given
that the current inventory is sufficient to meet maximum demand for up to 3 periods with a 2-period lead
time, decides not to place an order in this period to prevent excess inventory accumulation, as explained in
the agent's reasoning.

3.5.3| Analysis of the invagent application in behpakhsh

This example demonstrates how InvAgent can make intelligent decisions across various supply chain
scenarios for Behpakhsh using precise prompts and logical analysis. In this example:



167
Bagherian et al. | Sup. Chain Oper. Decis. Mak. 2(3) (2025) 156-172

I. Prevention of inventory accumulation: the model's decision helps reduce holding costs and prevents resource

wastage.

II. Consideration of lead times and bullwhip effect: By accounting for lead times, InvAgent aligns new orders
with current conditions.

III. Logical and transparent response: transparency in decision-making logic increases trust in the model and
enables review and evaluation of responses.

This approach not only demonstrates InvAgent's high adaptability but also highlights its role in improving
inventory management and reducing costs in Behpakhsh's supply chain.

Evaluation of base exploratory variables results

The evaluation results of base stock policies and demand-tracking policies are presented in Table 5. These
evaluations show how different inventory policies perform under various demand conditions. In the first part
of the table, the performance of the base-stock policy is shown for different desired inventory levels, based
on production capacity. The results indicate that maintaining a lower inventory level generally performs better
under varying demand conditions. In the second part, five types of demand-tracking policies are presented,
defined using various formulas including sales, lead time, and backlog. While none of these policies
consistently outperform the others, averaging sales is generally effective in managing variable demand in most
scenarios.

3.6| Case Studies at Behpakhsh: Evaluating InvAgent Performance under
Different Demand Scenarios

This section presents two case studies of InvAgent's performance in managing inventory in Behpakhsh's
supply chain. These studies examine variable demand scenarios without a strategy and seasonal demand with
a strategy. The supply chain structure in both scenarios includes four stages: retailer, wholesaler, distributor,
and manufacturer, flowing from downstream to upstream.

Variable demand scenario: innovative performance analysis in Behpakhsh's supply chain

Under variable demand, InvAgent's performance in managing demand changes, inventory, accumulation, and
profit in Behpakhsh's supply chain was examined. As shown in Fig. 70, the model responded to demand
dynamics through real-time understanding and proper timing,.

Supply chain response to demand changes

I. At the start of the simulation, demand suddenly increases, and the retailer, as the first point of contact with

customers, faces inventory depletion.
II.  Retailer action: to meet customer demand, the retailer places new orders with the wholesaler.

III.  Inventoty stabilization: due to supply chain lead times (from manufacturer to retailet), the retailet's
inventory is not immediately stabilized.

IV.  Wholesaler and distributor actions: as intermediary links, they fulfill orders for upstream customers and

replenish their inventory after receiving orders from retailers.

V. Manufacturer: at the top of the supply chain, manufacturers process incoming orders and convert raw
materials into products.

Inventory accumulation at the distributor
Midway through the simulation, inventory accumulation at the distributor reached its peak due to:

I. Previous inventory depletion: In period 6, the distributor's inventory is exhausted because new orders were
cither not placed on time or delayed by transfer lead times.

II. High accumulation in period 7: Newly arrived inventory in period 7 causes accumulation at the distributor.
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Lessons learned and recommendations

I. Lead time management: to prevent accumulation or shortages, the distributor should place orders
considering supply chain lead times, stabilizing inventory flow.

II. Demand forecasting: accurate forecasts from InvAgent can optimize inventory provisioning across supply
chain levels.

III. Supply chain coordination: all levels, from manufacturer to retailer, must coordinate orders to ensure timely
inventory transfer.

Seasonal demand scenario: Inventive performance analysis at Behpakhsh

Under seasonal demand, InvAgent reacts to changing demand patterns and their impact on inventory,
accumulation, and profit. This scenario is designed based on different demand patterns across time periods.

Fig. 17 shows how the model places orders and manages inventory.
Demand pattern in the scenario
1. Periods 1-4: demand follows a uniform distribution, ranging from 0 to 4 units per period.
II.  Periods 5-12: demand shifts to a different uniform distribution, indicating a peak period.
Model performance across periods 1-4: increased downstream orders
I. Retailers and wholesalers anticipate increased future demand and place larger orders with the distributor.

II. Distributor and manufacturer: attempt to procure large amounts from upstream suppliers, quickly

depleting manufacturer inventory and increasing new orders from the distributor.
Period 4: accumulation and reduced manufacturer profit

I. Inventory accumulation: increased order volume in period 4 significantly reduces manufacturer inventory
and increases supply chain accumulation.

II.  Profit reduction: due to inventory management costs and poor coordination, the manufacturer's profit
reaches a minimum.

Periods 5-12: restoring balance and flexibility

Order management: the manufacturer starts ordering raw materials and gradually restores inventory and
orders to balance.

Reduced accumulation: improved order management and better supply chain coordination reduce inventory

accumulation and enhance profitability.
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Fig .9. Example of InvAgent input and response for a constant demand scenario in the

company to broadcast using GPT-4.
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Table 5. Evaluation results (average episode rewards and standard deviations) for
a variety of norm-based models in different demand scenarios for broadcasting.

Inventory Constant Variable Larger Seasonal Normal
0.8¢cpy, -208.00 -435.69  -234.28 -207.75 -150.67
0.9¢cpy, -252.00 -479.69  -310.74 -229.08 -226.31
Cm -296.00 -523.69  -392.21 -274.29 -322.44
Smit—1Lm + Bm—1 -364.00 -390.17  -393.31 -525.84 -283.39
Smi—1(Lm +1) + Bpqy  -120.00 -395.68  -470.55 -524.26 -351.23
Smt-1Llm + Bt -360.00 -412.41 -265.07  -421.90 -232.20
Smte1(Lm + 1) + By -252.00 -382.77  -489.75 -610.03 -177.54
1.2St—1Lm + Bmis -361.00 -397.22. -325.81 -479.07 -218.98

Table 6. Hyperparameters for independent neighbor policy optimization (IPPO) with
parameter sharing as a basis for comparison in broadcast.

Parameter Constant Variable Larger Seasonal Normal
Hidden units [128,128]  [256,256] [128,128] [128,128] [128,128]
Activation function RelLU RelLU RelLU RelLU RelLU
Learning rate 0.0001 0.0001 0.001 0.0005 0.0005
Training batch size 1000 1000 2000 2000 1000
SGD mini-batch size 128 128 128 128 128
SGD iterations 5 10 5 5 5
Training episodes 1000 1500 1000 800 500

Table 7. Hyperparameters for the basic multi-agent proximal policy optimization

(mappo) model.
Parameter Constant Variable Larger Seasonal Normal
Hidden units [128,128]  [128,128] [128,128] [256,256] [128,128]
Activation function RelLU RelLU RelLU RelLU RelLU
Learning rate 0.0001 0.0001 0.001 0.0001 0.0001
Training batch size 500 2000 2000 1000 500
SGD mini-batch size 128 32 32 128 128
SGD iterations 10 5 10 10 10
Training episodes 500 500 800 1500 500
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Fig. 10. Inventory, backlog, orders, and profit under variable demand
(InvAgent, no strategy).
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4| Conclusion

In this study, the effectiveness of using LLLMs as autonomous agents in multi-agent inventory management
for optimizing the Behpaksh supply chain was investigated. Our innovative model, InvAgent, was able to
make adaptive and informed decisions without the need for prior training by leveraging the zero-shot learning
capabilities of LLMs. One of the outstanding features of InvAgent was its integration of structured reasoning
via the CoT method, which improved the model's explainability and transparency. This feature made
InvAgent a more reliable system than traditional heuristic and reinforcement learning models.

Key results

I. Competitive performance: Invariant demonstrated superior performance and lower costs across various
demand scenarios compared to heuristic policies.

II. Adaptability: the model adapted to complex, unpredictable demand changes and minimized shortages.

III. High potential: the use of LLMs for intelligent SCM highlighted reductions in inventory costs and improved

decision-making.
Future outlook

To expand the capabilities of InvAgent and improve its performance in the Behpaksh Company's supply

chain, the following axes will be considered in future research:

1. Use of reinforcement learning: tuning the model to improve decision-making capabilities through iteration

and learning optimal strategies.

II. Evaluation with real-world data: 1) using real supply chain data, including seasonal and variable demand
patterns, to practically evaluate the model's performance, and 2) decomposing data into level, trend, and

seasonal components to improve forecast accuracy.

III.  Combining human-designed strategies with the inherent capabilities of LLMs: improving the management

of complex and unpredictable demand patterns by combining these two approaches.
Final conclusion

The InvAgent model demonstrated how new technologies, such as LLMs, can make Behpaksh Company's
supply chain more efficient and flexible. This research is an important step towards the digitalization and
intelligence of SCM and enables the use of advanced solutions to manage future challenges.

Table 8. Ablation of InvAgent prompts in variable demand; rewards
averaged over 5 trials (£SD) with % change from first result.

Model Reward Performance change
GPT-4 -336.60  0.00%

GPT-4 -377.60  -12.18%

GPT-4 -349.40  -3.80%

GPT-4 -419.00  -24.48%

GPT-4 -379.40  -12.72%

GPT-4 -339.20  -0.77%

GPT-4 -369.80  -9.86%

GPT-4 -387.40  -15.09%

GPT-40 -405.00  -20.32%

GPT-4-Turbo -636.40  -89.07%
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