A Short Review of EOQ Models and Fuzzy Theory in Inventory Management
Keywords:
EOQ, SCM, IMAbstract
In our manuscript, we investigate diverse approaches and methodologies proposed by researchers and scientists. Our analysis encompasses supply chain management, vendor management, and healthcare systems. Specifically, we delve into Economic Order Quantity (EOQ) within IM, exploring its implications. Additionally, we aim to present literature on fuzzy theory, including discussions about triangular and trapezoidal fuzzy sets. Recognizing that classical theory grapples with uncertainty, we underscore the significance of comprehending fuzzy theory through relevant scholarly works.
References
K, S. J. (2006). Operations research: theory and applications. MACMILAN Publishers.
Hussein, H. A., Shiker, M. A. K., & Zabiba, M. S. M. (2020). A new revised efficient of vam to find the initial solution for the transportation problem. Journal of physics: conference series (p. 12032). IOP Publishing. https://doi.org/10.1088/1742-6596/1591/1/012032
Singh, A., Wiktorsson, M., & Hauge, J. B. (2021). Trends in machine learning to solve problems in logistics. Procedia cirp, 103, 67–72. https://doi.org/10.1016/j.procir.2021.10.010
Dubey, A., & Kumar, R. (2023). Extended uncertainty principle for inventory control: an updated review of environments and applications. International journal of neutrosophic science, 21(4), 8–20. https://doi.org/10.54216/IJNS.210401
Tripathi, S. K., & Kumar, R. (2023). A review of neutrosophic linear programming problems under uncertain environments. International journal of neutrosophic science, 21(4), 94–105. https://doi.org/10.54216/IJNS.210410
Navya Pratyusha, M., & Kumar, R. (2023). Critical path method and project evaluation and review technique under uncertainty:a state-of-art review. International journal of neutrosophic science, 21(3), 143–153. https://doi.org/10.54216/IJNS.210314
Dubey, A., & Kumar, R. (2024). Recent trends and advancements in inventory management. EAI endorsed transactions on scalable information systems, 11(2), 1–5. https://doi.org/10.4108/eetsis.4543
Tripathi, S. K., & Kumar, R. (2023). A short literature on linear programming problem. EAI endorsed transactions on energy web, 10(1), 1–5. https://doi.org/10.4108/ew.4516
Tripathi, S. K., Dey, A., Broumi, S., & Kumar, R. (2024). Exploring neutrosophic linear programming in advanced fuzzy contexts. Neutrosophic sets and systems, 66, 170–184. https://doi.org/10.5281/zenodo.10939251
Pratyusha, N. M., Dey, A., Broumi, S., & Kumar, R. (2024). Critical Path method and project evaluation and review technique: a neutrosophic review. Neutrosophic sets and systems, 67, 135–146. https://doi.org/10.5281/zenodo.11123614
Pratyusha, M. N., & Kumar, R. (2024). Enhancing critical path problemin neutrosophic environment using Python. CMES - computer modeling in engineering and sciences, 140(3), 2957–2976. https://doi.org/10.32604/cmes.2024.051581
Dubey, A., & Kumar, R. (2024). Inventory model with sensitivity analysis under uncertain environment. Journal of information and optimization sciences, 45(4), 1081–1092. https://doi.org/10.47974/jios-1693
Pratyusha, M. N., & Kumar, R. (2024). Solving neutrosophic critical path problem using Python. Journal of information and optimization sciences, 45(4), 897–911. https://doi.org/10.47974/JIOS-1614
Tripathi, S., & Kumar, R. (2024). Solving neutrosophic minimal cost flow problem using multi-objective linear programming problem. Journal of information and optimization sciences, 45, 1093–1104. https://doi.org/10.47974/JIOS-1694
Edalatpanah, S. A. (2018). Neutrosophic perspective on DEA. Journal of applied research on industrial engineering, 5(4), 339–345. https://doi.org/10.22105/jarie.2019.196020.1100
Edalatpanah, S. A. (2019). A nonlinear approach for neutrosophic linear programming. Journal of applied research on industrial engineering, 6(4), 367–373. https://doi.org/10.22105/JARIE.2020.217904.1137
Salimi, P. S., & Edalatpanah, S. A. (2020). Supplier selection using fuzzy AHP method and D-numbers. Journal of fuzzy extension and applications, 1(1), 1–14. https://doi.org/10.22105/jfea.2020.248437.1007
Edalatpanah, S. A. (2023). A paradigm shift in linear programming: an algorithm without artificial variables. Systemic analytics, 1(1), 1–10. https://doi.org/10.31181/sa1120232
Sallam, K., Mohamed, M., & Wagdy Mohamed, A. (2023). Internet of things (IoT) in supply chain management: challenges, opportunities, and best practices. Sustainable machine intelligence journal, 2, 1–3. https://doi.org/10.61185/smij.2023.22103
Khalifa, H. A. E.-W., Edalatpanah, S. A., & Bozanic, D. (2024). On min-max goal programming approach for solving piecewise quadratic fuzzy multi- objective de novo programming problems. Systemic analytics, 2(1), 36–48. https://doi.org/10.31181/sa21202411
Zahedi, M., Naghdi Khanachah, S., & Zahedi, M. (2024). Providing a structural model lean sustainable supply chain with total quality management approech in the automotive industry. International journal of research in industrial engineering, 13(2), 152–165. https://doi.org/10.22105/riej.2022.342951.1312
Nazabadi, M. R., Najafi, E., & Rasinojehdehi, R. (2024). Integrated decision-making in production, maintenance, repair, and quality planning using an agent-based simulation. Risk assessment and management decisions, 1(1), 12–21. https://ramd.reapress.com/journal/article/view/23
Saeedi, S., Mohammadi, M., & Torabi, S. A. (2015). A de novo programming approach for a robust closed-loop supply chain network design under uncertainty: An M/M/1 queueing model. International journal of industrial engineering computations, 6(2), 211–228. https://doi.org/10.5267/j.ijiec.2014.11.002
Harris, F. W. (1990). How many parts to make at once. Operations research, 38(6), 947–950.
Rabbani, M., Rezaei, H., Lashgari, M., & Farrokhi-Asl, H. (2018). Vendor managed inventory control system for deteriorating items using metaheuristic algorithms. Decision science letters, 7(1), 25–38. https://doi.org/10.5267/j.dsl.2017.4.006
Saha, E., & Ray, P. K. (2019). Modelling and analysis of healthcare inventory management systems. Opsearch, 56(4), 1179–1198. https://doi.org/10.1007/s12597-019-00415-x
Jiang, Y., Shi, C., & Shen, S. (2019). Service level constrained inventory systems. Production and operations management, 28(9), 2365–2389. https://doi.org/10.1111/poms.13060
Yadav, A. S., Ahlawat, N., Sharma, N., Swami, A., & Navyata. (2020). Healthcare systems of inventory control for blood bank storage with reliability applications using genetic algorithm. Advances in mathematics: scientific journal, 9(7), 5133–5142. https://doi.org/10.37418/amsj.9.7.80
Abdolazimi, O., Shishebori, D., Goodarzian, F., Ghasemi, P., & Appolloni, A. (2021). Designing a new mathematical model based on ABC analysis for inventory control problem: A real case study. RAIRO - operations research, 55(4), 2309–2335. https://doi.org/10.1051/ro/2021104
Fikri, A., Andika, A., Dava Cahyoga, M. A., & Ratnasari, A. (2020). Implementation of the FIFO Method in the development of inventory applications for agents sinar baru. Journal of information systems and informatics, 2(2), 216–230. https://doi.org/10.33557/journalisi.v2i2.72
Ajay, S. Y., Abid, M., Bansal, S., Tyagi, S. L., & Kumar, T. (2020). Fifo and lifo in green supply chain inventory model of hazardous substance components industry with storage using simulated annealing. Advances in mathematics: scientific journal, 9(7), 5127–5132. https://doi.org/10.37418/amsj.9.7.79
Zhu, S., Jaarsveld, W. van, & Dekker, R. (2020). Spare parts inventory control based on maintenance planning. Reliability engineering and system safety, 193, 106600. https://doi.org/10.1016/j.ress.2019.106600
Rashid Hashmi, A., Aina Amirah, N., Yusof, Y., & Noor Zaliha, T. (2020). Exploring the dimensions using exploratory factor analysis of disruptive factors and inventory control. The economics and finance letters, 7(2), 247–254. https://doi.org/10.18488/journal.29.2020.72.247.254
Ahmed, E. R., Alabdullah, T. T. Y., Ardhani, L., & Putri, E. (2021). The Inventory control system’s weaknesses based on the accounting postgraduate students’ perspectives. Jabe (journal of accounting and business education), 5(2), 2528–7281. https://doi.org/10.26675/jabe.v5i2.19312
Hashmi, A. R., Amirah, N. A., Yusof, Y., & Zaliha, T. N. (2021). Mediation of inventory control practices in proficiency and organizational performance: state-funded hospital perspective. Uncertain supply chain management, 9(1), 89–98. https://doi.org/10.5267/j.uscm.2020.11.006
Bhalla, S., Alfnes, E., Hvolby, H. H., & Sgarbossa, F. (2021). Advances in spare parts classification and forecasting for inventory control: A literature review. IFAC-papersonline, 54(1), 982–987. https://doi.org/10.1016/j.ifacol.2021.08.118
Song, J.-S. J., Xue, Z., & Shen, X. (2021). Demand management and inventory control for substitutable products. SSRN electronic journal, 12, 1–44. https://doi.org/10.2139/ssrn.3866775
Boute, R. N., Gijsbrechts, J., van Jaarsveld, W., & Vanvuchelen, N. (2022). Deep reinforcement learning for inventory control: A roadmap. European journal of operational research, 298(2), 401–412. https://doi.org/10.1016/j.ejor.2021.07.016
Mittal, S. (2024). Framework for optimized sales and inventory control: a comprehensive approach for intelligent order management application. International journal of computer trends and technology, 72(3), 61–65. https://doi.org/10.14445/22312803/ijctt-v72i3p109
Mandal, D. B. (2020). An inventory model for time-varying deteriorating items and weibull distributed ameliorating items with cubic demand under salvage value and shortages. International journal for research in applied science and engineering technology, 8(11), 307–315. https://doi.org/10.22214/ijraset.2020.32126
Samal, D., Mishra, M. R., & Kalam, A. (2022). An EOQ model for Inventory System dependent upon on hand inventory without shortages. Journal of integrated science and technology, 10(3), 193–197.
Çalışkan, C. (2022). Derivation of the optimal solution for the economic production quantity model with planned shortages without derivatives. Modelling, 3(1), 54–69. https://doi.org/10.3390/modelling3010004
Patriarca, R., Di Gravio, G., Costantino, F., & Tronci, M. (2020). EOQ inventory model for perishable products under uncertainty. Production engineering, 14(5–6), 601–612. https://doi.org/10.1007/s11740-020-00986-5
Sundararajan, R., Vaithyasubramanian, S., & Nagarajan, A. (2021). Impact of delay in payment, shortage and inflation on an EOQ model with bivariate demand. Journal of management analytics, 8(2), 267–294. https://doi.org/10.1080/23270012.2020.1811165
Ghai, S., Chauhan, A., & Singh, M. P. (2020). Optimization of the EOQ model with reliability affected demand rate and uncertainty. International journal of management (IJM), 11(7). https://doi.org/10.34218/IJM.11.7.2020.153
Sundararajan, R., Vaithyasubramanian, S., & Rajinikannan, M. (2022). Price determination of a non-instantaneous deteriorating EOQ model with shortage and inflation under delay in payment. International journal of systems science: operations and logistics, 9(3), 384–404. https://doi.org/10.1080/23302674.2021.1905908